Eigenvalues of majorized Hermitian matrices and Littlewood–Richardson coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of Majorized Hermitian Matrices

Answering a question raised by S. Friedland, we show that the possible eigenvalues of Hermitian matrices (or compact operators) A, B, and C with C ≤ A+B are given by the same inequalities as in Klyachko’s theorem for the case where C = A + B, except that the equality corresponding to tr(C) = tr(A) + tr(B) is replaced by the inequality corresponding to tr(C) ≤ tr(A) + tr(B). The possible types o...

متن کامل

Eigenvalues of Hermitian Toeplitz matrices

The paper is concerned with finite Hermitian Toeplitz matrices whose entries in the first row grow like a polynomial. Such matrices cannot be viewed as truncations of an infinite Toeplitz matrix which is generated by an integrable function or a nice measure. The main results describe the first-order asymptotics of the extreme eigenvalues as the matrix dimension goes to infinity and also deliver...

متن کامل

Perturbation of Multiple Eigenvalues of Hermitian Matrices

This paper is concerned with the perturbation of a multiple eigenvalue μ of the Hermitian matrix A = diag(μI, A22) when it undergoes an off-diagonal Email addresses: [email protected] (Ren-Cang Li), [email protected] (Yuji Nakatsukasa), [email protected] (Ninoslav Truhar), [email protected] (Wei-guo Wang) Supported in part by National Science Foundation Grants DMS-0810506 and DMS1115...

متن کامل

Eigenvalues of sums of pseudo-Hermitian matrices

We study analogues of classical inequalities for the eigenvalues of sums of Hermitian matrices for the cone of admissible elements in the pseudo-Hermitian case. In particular, we obtain analogues of the Lidskii-Wielandt inequalities.

متن کامل

The Distance between the Eigenvalues of Hermitian Matrices

It is shown that the minmax principle of Ky Fan leads to a quick simple derivation of a recent inequality of V. S. Sunder giving a lower bound for the spectral distance between two Hermitian matrices. This brings out a striking parallel between this result and an earlier known upper bound for the spectral distance due to L. Mirsky. Let A be a Hermitian matrix of order n and let A ¿(A) denote th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2000

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(00)00218-4